
Biostatistics I: Introduction to R
Indexing and subsetting

Eleni-Rosalina Andrinopoulou

Department of Biostatistics, Erasmus Medical Center

R e.andrinopoulou@erasmusmc.nl

7@erandrinopoulou

mailto:e.andrinopoulou@erasmusmc.nl
https://twitter.com/erandrinopoulou

In this Section

I Indexing
I Subsetting
I A lot of practice

1

Indexing/Subsetting

I When transforming and analyzing data we often need to select
specific observations or variables
I Examples: Select . . .

I the 3rd element of vector age
I the 3rd column of the pbc data set
I the sex of the 10th patient
I all information of the 5th patient
I the serum cholesterol for all males
I the age for male patients or patients that have serum bilirubin > 3
I the first measurement per patient

2

Indexing/Subsetting

I This can be done using square bracket ([]) notation and indices.
I Three basic types

I position indexing
I logical indexing
I name indexing

3

Vectors
Indexing with vector

I For position indexing, use a positive value to select an element

x <- c(6:17)
x

[1] 6 7 8 9 10 11 12 13 14 15 16 17

x[2]

[1] 7

I Use multiple positive values to select multiple elements

x[c(2,3,4)]

[1] 7 8 9
4

Vectors

Indexing with vector

I For position indexing, use duplicated positive values to select the
same elements

x <- c(6:17)
x

[1] 6 7 8 9 10 11 12 13 14 15 16 17

x[c(2,2,2)]

[1] 7 7 7

5

Vectors

Indexing with vector

I For position indexing, use a negative value to remove an element

x <- c(6:17)
x

[1] 6 7 8 9 10 11 12 13 14 15 16 17

x[-5]

[1] 6 7 8 9 11 12 13 14 15 16 17

I Positive and negative indices cannot be combined

6

Vectors

Indexing with vector

I Use logical index of the same length to select elements where the
value is TRUE

x <- c(6:10)
y <- c(TRUE, FALSE, FALSE, FALSE, FALSE)
x[y]

[1] 6

7

Vectors
Indexing with vector

I Use logical indexing in combination with conditions

x <- c(6:10)
x[x > 7]

[1] 8 9 10

x[x > 7 & x > 9]

[1] 10

x[x > 7 | x > 9]

[1] 8 9 10
8

Vectors

Indexing with vector

I For name/character indexing, use the name of the element

x <- c(foo=5, bar=4, one=7, two=12, three=2)
x[c(’foo’, ’one’)]

foo one
5 7

I Use the function names to obtain the names

9

Matrices

Indexing with matrix

I Indexing matrices is similar to indexing vectors but with double
index
I The first position denotes the rows ["index",]
I The first position denotes the columns [, "index"]

mat <- matrix(data = 1:4,
nrow = 2, ncol = 2)

mat

[,1] [,2]
[1,] 1 3
[2,] 2 4

I Use position indexing as:

mat <- matrix(data = 1:4,
nrow = 2, ncol = 2)

mat[2, 2]

[1] 4

10

Matrices

Indexing with matrix

I Indexing matrices is similar to indexing vectors but with double
index
I The first position denotes the rows ["index",]
I The first position denotes the columns [, "index"]

mat <- matrix(data = 1:4,
nrow = 2, ncol = 2)

mat

[,1] [,2]
[1,] 1 3
[2,] 2 4

I Use position indexing as:

mat <- matrix(data = 1:4,
nrow = 2, ncol = 2)

mat[2, 2]

[1] 4

10

Matrices
Indexing with matrix

I Be cautious, it also works with a single index. In this case, it selects
the particular element of the vector that will be included in the
matrix

mat <- matrix(data = 1:4,
nrow = 2, ncol = 2)

mat[2]

[1] 2

mat[[2]]

[1] 2
11

Matrices
Indexing with matrix

I When we leave a position blank
all elements are selected

mat <- matrix(data = 1:4,
nrow = 2, ncol = 2)

mat

[,1] [,2]
[1,] 1 3
[2,] 2 4

mat[2,]

[1] 2 4 12

Arrays
Indexing with array

ar <- array(data = 1:4,
dim = c(1,2,2))

ar

, , 1

[,1] [,2]
[1,] 1 2

, , 2

[,1] [,2]
[1,] 3 4

ar[1, 1,]

[1] 1 3

13

Data Frames
Indexing with data.frame

I Works with single and double index

DF <- data.frame(x = 1:3,
y = c("male", "male", "female"))

DF

x y
1 1 male
2 2 male
3 3 female

I Use position single indexing

DF[2]

y
1 male
2 male
3 female

DF[[2]]

[1] "male" "male" "female"

14

Data Frames
Indexing with data.frame

I Works with single and double index

DF <- data.frame(x = 1:3,
y = c("male", "male", "female"))

DF

x y
1 1 male
2 2 male
3 3 female

I Use position single indexing

DF[2]

y
1 male
2 male
3 female

DF[[2]]

[1] "male" "male" "female"
14

Data Frames

Indexing with data.frame

I When using double index, indexing
works like a matrix

DF <- data.frame(x = 1:3,
y = c("male", "male", "female"))

DF

x y
1 1 male
2 2 male
3 3 female

I Use position indexing

DF[2,]

x y
2 2 male
I Use logical indexing

DF[DF$x < 2,]

x y
1 1 male

15

Data Frames

Indexing with data.frame

I $ provides a convenient notation to extract an element by name

head(pbc$time)

[1] 400 4500 1012 1925 1504 2503

head(pbc[,"time"])

[1] 400 4500 1012 1925 1504 2503

16

Data Frames

Indexing with data.frame

I Combine logical and position indexing in data frame

head(pbc[pbc$sex == "m", 1:7])

id time status trt age sex ascites
3 3 1012 2 1 70.07255 m 0
14 14 1217 2 2 56.22177 m 1
21 21 3445 0 2 64.18891 m 0
24 24 4079 2 1 44.52019 m 0
48 48 4427 0 2 49.13621 m 0
52 52 2386 2 1 50.54073 m 0

17

Data Frames

Indexing with data.frame

I Combine logical and position indexing in data frame

head(pbc[pbc$age > 30 | pbc$sex == "f", 1:7])

id time status trt age sex ascites
1 1 400 2 1 58.76523 f 1
2 2 4500 0 1 56.44627 f 0
3 3 1012 2 1 70.07255 m 0
4 4 1925 2 1 54.74059 f 0
5 5 1504 1 2 38.10541 f 0
6 6 2503 2 2 66.25873 f 0

18

Data Frames

Indexing with data.frame

I Combine logical and position indexing in data frame

head(pbc[pbc$age > 30 & pbc$sex == "f", 1:7])

id time status trt age sex ascites
1 1 400 2 1 58.76523 f 1
2 2 4500 0 1 56.44627 f 0
4 4 1925 2 1 54.74059 f 0
5 5 1504 1 2 38.10541 f 0
6 6 2503 2 2 66.25873 f 0
7 7 1832 0 2 55.53457 f 0

19

Lists

Indexing with list

I Lists can be subsetted in the same way as vectors using single
brackets - Note that the output is a list

I Use position indexing

mylist <- list(y = c(14, 45), z = c("m", "f", "f"))
mylist[2]

$z
[1] "m" "f" "f"

20

Lists

Indexing with list

I Double square brackets can be also used - Note that the output is a
vector

I Use position indexing

mylist <- list(y = c(14, 45), z = c("m", "f", "f"))
mylist[[2]]

[1] "m" "f" "f"

21

Lists
Indexing with list

I $ provides a convenient notation to extract an element by name -
Note that the output is a vector

mylist <- list(y = c(14, 45), z = c("m", "f", "f"))
mylist

$y
[1] 14 45

$z
[1] "m" "f" "f"

mylist$y

[1] 14 45
22

Summary

Vectors
I []
I [""] - for categorical variables

Matrices
I [,]
I [[]], []

Arrays
I [, ,]

Data frames
I [,]
I [[]], []
I $

Lists
I []
I [[]]
I $

23

Practice

I Use the following webpage to further investigate indexing and
subsetting
https://emcbiostatistics.shinyapps.io/indexing/

24

https://emcbiostatistics.shinyapps.io/indexing/

